Đối với phương trình bậc hai \(a{x^2} + bx + c = 0\,\,\). Khẳng định nào dưới đây là đúng?

Câu hỏi :

Đối với phương trình bậc hai \(a{x^2} + bx + c = 0\,\,\). Khẳng định nào dưới đây là đúng?

A. Nếu –a – b + c = 0 thì phương trình có một nghiệm là x1 = -1 còn nghiệm kia là \({x_2} =  - \dfrac{c}{{ - a}}\)

B. Nếu –a – b – c = 0 thì phương trình có một nghiệm là x1 = 1 còn nghiệm kia là \({x_2} =  - \dfrac{{ - c}}{a}\)  

C. Nếu a + b - c = 0 thì phương trình có một nghiệm là x1 = -1 còn nghiệm kia là \({x_2} =  - \dfrac{c}{a}\)

D. Nếu b + c – a = 0 thì phương trình có một nghiệm là x1 = -1 còn nghiệm kia là \({x_2} =  - \dfrac{a}{c}\)

* Đáp án

B

* Hướng dẫn giải

Ta có : nếu phương trình có \(a + b + c = 0\) thì phương trình có một nghiệm là \({x_1} = 1,\) nghiệm kia là \({x_2} = \dfrac{c}{a}\) .

Có thể thấy điều kiện \(a + b + c = 0 \Leftrightarrow  - \left( {a + b + c} \right) = 0\)\( \Leftrightarrow  - a - b - c = 0\) và \({x_2} = \dfrac{c}{a} =  - \dfrac{{ - c}}{a}\)

Nên ta có thể viết lại nếu phương trình có \( - a - b - c = 0\) thì phương trình có một nghiệm là \({x_1} = 1,\) nghiệm kia là \({x_2} =  - \dfrac{{ - c}}{a}\) nên A đúng.

Copyright © 2021 HOCTAP247