A. \({x_1} = \dfrac{{ \sqrt 2 + \sqrt 2 }}{3} ;\) \({x_2} = \dfrac{{ \sqrt 2 - \sqrt 2 }}{3} \)
B. \({x_1} = \dfrac{{ 2\sqrt 2 + \sqrt 2 }}{3} ;\) \({x_2} = \dfrac{{ \sqrt 2 - \sqrt 2 }}{3} \)
C. \({x_1} = \dfrac{{ \sqrt 2 + \sqrt 2 }}{3} ;\) \({x_2} = \dfrac{{ 2\sqrt 2 - \sqrt 2 }}{3} \)
D. \({x_1} = \dfrac{{ 2\sqrt 2 + \sqrt 2 }}{3} ;\) \({x_2} = \dfrac{{ 2\sqrt 2 - \sqrt 2 }}{3} \)
D
\({\left( {2x - \sqrt 2 } \right)^2} - 1 = \left( {x + 1} \right)\left( {x - 1} \right)\)\( \Leftrightarrow 4{x^2} - 4\sqrt 2 x + 2 - 1 = {x^2} - 1 \)\(\Leftrightarrow 3{x^2} - 4\sqrt 2 x + 2 = 0\)
\(a = 3;b' = - 2\sqrt 2 ;c = 2\); \(\Delta ' = {\left( {b'} \right)^2} - ac \)\(= {\left( {2\sqrt 2 } \right)^2} - 3.2 = 2 > 0\)
Phương trình có hai nghiệm phân biệt
\({x_1} = \dfrac{{ - b' + \sqrt {\Delta '} }}{a} \)\(= \dfrac{{ 2\sqrt 2 + \sqrt 2 }}{3} ;\)
\({x_2} = \dfrac{{ - b' - \sqrt {\Delta '} }}{a}\)\( = \dfrac{{ 2\sqrt 2 - \sqrt 2 }}{3} \)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247