A. \(\left[ \begin{array}{l}x = \dfrac{{-15 + \sqrt {337} }}{4}\\x = \dfrac{{15 - \sqrt {337} }}{4}\end{array} \right.\)
B. \(\left[ \begin{array}{l}x = \dfrac{{15 + \sqrt {337} }}{4}\\x = \dfrac{{15 - \sqrt {337} }}{4}\end{array} \right.\)
C. \(\left[ \begin{array}{l}x = \dfrac{{15 + \sqrt {337} }}{4}\\x = \dfrac{{-15 - \sqrt {337} }}{4}\end{array} \right.\)
D. \(\left[ \begin{array}{l}x = \dfrac{{-15 + \sqrt {337} }}{4}\\x = \dfrac{{-15 - \sqrt {337} }}{4}\end{array} \right.\)
B
\(\begin{array}{l}\dfrac{{x\left( {x - 7} \right)}}{3} - 1 = \dfrac{x}{2} - \dfrac{{x - 4}}{3}\\ \Leftrightarrow 2x\left( {x - 7} \right) - 6 = 3x - 2\left( {x - 4} \right)\\ \Leftrightarrow 2{x^2} - 14x - 6 = 3x - 2x + 8\\ \Leftrightarrow 2{x^2} - 15x - 14 = 0\end{array}\)
Ta có \(\Delta = {\left( { - 15} \right)^2} - 4.2.\left( { - 14} \right) = 337 > 0\)
Phương trình có hai nghiệm phân biệt \(\left[ \begin{array}{l}x = \dfrac{{15 + \sqrt {337} }}{4}\\x = \dfrac{{15 - \sqrt {337} }}{4}\end{array} \right.\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247