Cho biết phương trình \({x^3} + 2{x^2} - {\left( {x - 3} \right)^2} = \left( {x - 1} \right)\left( {{x^2} - 2} \right)\) có nghiệm là:

Câu hỏi :

Phương trình \({x^3} + 2{x^2} - {\left( {x - 3} \right)^2} = \left( {x - 1} \right)\left( {{x^2} - 2} \right)\) có nghiệm là:

A. \(\left[ \begin{array}{l}x = \dfrac{{  4 + \sqrt {38} }}{2}\\x = \dfrac{{ - 4 - \sqrt {38} }}{2}\end{array} \right.\)

B. \(\left[ \begin{array}{l}x = \dfrac{{ - 4 + \sqrt {38} }}{2}\\x = \dfrac{{ - 4 + \sqrt {38} }}{2}\end{array} \right.\)

C. \(\left[ \begin{array}{l}x = \dfrac{{ - 4 + \sqrt {38} }}{2}\\x = \dfrac{{ - 4 - \sqrt {38} }}{2}\end{array} \right.\)

D. \(\left[ \begin{array}{l}x = \dfrac{{ - 4 - \sqrt {38} }}{2}\\x = \dfrac{{ - 4 - \sqrt {38} }}{2}\end{array} \right.\)

* Đáp án

C

* Hướng dẫn giải

Ta có

\(\begin{array}{l}{x^3} + 2{x^2} - {\left( {x - 3} \right)^2} = \left( {x - 1} \right)\left( {{x^2} - 2} \right)\\ \Leftrightarrow {x^3} + 2{x^2} - {x^2} + 6x - 9 = {x^3} - 2x - {x^2} + 2\\ \Leftrightarrow {x^2} + 6x - 9 =  - {x^2} - 2x + 2\\ \Leftrightarrow 2{x^2} + 8x - 11 = 0\end{array}\)

Ta có \(\Delta ' = {4^2} - 2.\left( { - 11} \right) = 38 > 0\) nên phương trình có hai nghiệm \(\left[ \begin{array}{l}x = \dfrac{{ - 4 + \sqrt {38} }}{2}\\x = \dfrac{{ - 4 - \sqrt {38} }}{2}\end{array} \right.\)

Copyright © 2021 HOCTAP247