Tìm số nghiệm của phương trình \(2{x^2} + 1 = \dfrac{1}{{{x^2}}} - 4\) là:

Câu hỏi :

Số nghiệm của phương trình \(2{x^2} + 1 = \dfrac{1}{{{x^2}}} - 4\) là:

A. 1

B. 2

C. 3

D. 4

* Đáp án

B

* Hướng dẫn giải

Điều kiện : \(x \ne 0.\)

Khử mẫu và biến đổi ta được

\(\begin{array}{l}2{x^4} + {x^2} = 1 - 4{x^2}\\ \Leftrightarrow 2{x^4} + 5{x^2} - 1 = 0\end{array}\)

Đặt \({x^2} = t\left( {t \ge 0} \right)\) ta có  \(2{t^2} + 5t - 1 = 0\)

\(\Delta  = {\left( { - 5} \right)^2} - 4.2\left( { - 1} \right) = 33 > 0\) nên phương trình có hai nghiệm \(\left[ \begin{array}{l}t = \dfrac{{ - 5 + \sqrt {33} }}{4}\left( \,nhận \right)\\t = \dfrac{{ - 5 - \sqrt {33} }}{4}\left( \,loại \right)\end{array} \right.\)

Với \(t = \dfrac{{ - 5 + \sqrt {33} }}{4} \)\(\Rightarrow {x^2} = \dfrac{{\sqrt {33}  - 5}}{4}\)\( \Rightarrow \left[ \begin{array}{l}x = \sqrt {\dfrac{{\sqrt {33}  - 5}}{4}} \\x =  - \sqrt {\dfrac{{\sqrt {33}  - 5}}{4}} \end{array} \right.\)

Vậy phương trình đã cho có hai nghiệm \(x =  \pm \sqrt {\dfrac{{\sqrt {33}  - 5}}{4}} \)

Copyright © 2021 HOCTAP247