A. Phương trình có nghiệm này gấp chín lần nghiệm kia
B. Phương trình có nghiệm này gấp đôi nghiệm kia
C. Phương trình có nghiệm này gấp đôi nghiệm kia
D. Phương trình vô nghiệm
A
Điều kiện: \(\left\{ \begin{array}{l}x \ne 0\\2x - 1 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne 0\\x \ne \dfrac{1}{2}\end{array} \right.\)
\(\begin{array}{l}\dfrac{{2x - 1}}{x} + 3 = \dfrac{{x + 3}}{{2x - 1}}\\ \Leftrightarrow \dfrac{{{{\left( {2x - 1} \right)}^2}}}{{x\left( {2x - 1} \right)}} + \dfrac{{3x\left( {2x - 1} \right)}}{{x\left( {2x - 1} \right)}} = \dfrac{{\left( {x + 3} \right)x}}{{x\left( {2x - 1} \right)}}\\ \Leftrightarrow {\left( {2x - 1} \right)^2} + 3x\left( {2x - 1} \right) - \left( {x + 3} \right)x = 0\\ \Leftrightarrow 4{x^2} - 4x + 1 + 6{x^2} - 3x - {x^2} - 3x = 0\\ \Leftrightarrow 9{x^2} - 10x + 1 = 0;\\a = 9;b = - 10;c = 1\\Do\,\,a + b + c = 9 - 10 + 1 = 0\end{array}\)
Nên phương trình có 2 nghiệm phân biệt là:
\({x_1} = 1\left( {tm} \right);{x_2} = \dfrac{c}{a} = \dfrac{1}{9}\left( {tm} \right)\)
Vậy phương trình có có nghiệm này gấp chín lần nghiệm kia
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247