Từ điểm I kẻ hai dây cung AB và CD ( A nằm giữ a I và B,C nằm giữa I và D). Cặp góc nào sau đây bằng nhau?

Câu hỏi :

Cho đường tròn (O) và điểm I nằm ngoài  (O).Từ điểm I kẻ hai dây cung AB và CD ( A nằm giữa I và B,C nằm giữa I và D). Cặp góc nào sau đây bằng nhau?

A.  \(\widehat {ACI};\widehat {IBD}\)

B.  \(\widehat {CAI};\widehat {IBD}\)

C.  \(\widehat {ACI};\widehat {IDB}\)

D.  \(\widehat {ACI};\widehat {IAC}\)

* Đáp án

A

* Hướng dẫn giải

Xét (O) có ACD là góc nội tiếp chắn cung AD (chứa điểm B ); góc ABD là góc nội tiếp chắn cung AD (chứa điểm C ) nên \( \widehat {ACD} + \widehat {ABD} = \frac{1}{2}{.360^ \circ } = {180^ \circ }\)

Lại có \( \widehat {ACD} + \widehat {ACI} = {180^ \circ }\) nên \( \widehat {ACI} = \widehat {IBD}\)

Tương tự ta có \(\widehat {IAC} = \widehat {IDB}\)

Copyright © 2021 HOCTAP247