A. 47 giờ
B. 48 giờ
C. 49 giờ
D. 50 giờ
B
Giả sử nếu làm riêng thì người thứ nhất hoàn thành công việc trong \(x\) (giờ); người thứ hai trong \(y\) (giờ) (điều kiện là: \(x;y > 16\))
Khi đó, trong 1 giờ người thứ nhất làm được \(\dfrac{1}{x}\) công việc; người thứ hai làm được \(\dfrac{1}{y}\) công việc nên cả hai người làm được \(\dfrac{1}{x} + \dfrac{1}{y}\) công việc.
Hai người cùng làm trong 16 giờ thì xong nên ta có phương trình \(\dfrac{1}{x} + \dfrac{1}{y} = \dfrac{1}{{16}}\)
Người thứ nhất làm trong 3 giờ và người thứ hai làm trong 6 giờ thì chỉ hoàn thành được \(25\% = \dfrac{1}{4}\) công việc. Điều đó dẫn đến phương trình \(3.\dfrac{1}{x} + 6.\dfrac{1}{y} = \dfrac{1}{4}\)
Ta có hệ phương trình \(\left\{ \begin{array}{l}\dfrac{1}{x} + \dfrac{1}{y} = \dfrac{1}{{16}}\\3.\dfrac{1}{x} + 6.\dfrac{1}{y} = \dfrac{1}{4}\end{array} \right.\)
Đặt \(\dfrac{1}{x} = u;\dfrac{1}{y} = v\,\), ta được hệ phương trình bậc nhất hai ẩn \(u\) và \(v\).
\(\left\{ \begin{array}{l}u + v = \dfrac{1}{{16}}\\3u + 6v = \dfrac{1}{4}\end{array} \right.\)
Ta giải hệ phương trình này bằng phương pháp cộng đại số:
\(\left\{ \begin{array}{l}u + v = \dfrac{1}{{16}}\\3u + 6v = \dfrac{1}{4}\end{array} \right. \)\(\Leftrightarrow \left\{ \begin{array}{l}3u + 3v = \dfrac{3}{{16}}\\3u + 6v = \dfrac{1}{4}\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}u + v = \dfrac{1}{{16}}\\3v = \dfrac{1}{{16}}\end{array} \right. \)\(\Leftrightarrow \left\{ \begin{array}{l}v = \dfrac{1}{{48}}\\u = \dfrac{1}{{24}}\end{array} \right.\,\left( {\,thỏa\, mãn} \right)\)
Trở về phương trình đầu, ta được \(x = \dfrac{1}{u} = 24\left( {\,thỏa\, mãn} \right)\) và \(y = \dfrac{1}{v} = 48\left( {\,thỏa\, mãn} \right)\)
Vậy người thứ nhất làm riêng trong \(24\) giờ thì xong công việc, người thứ hai làm riêng trong \(48\) giờ thì xong công việc.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247