Rút gọn biểu thức: \(\displaystyle \left( {1 + {{a + \sqrt a } \over {\sqrt a + 1}}} \right)\left( {1 - {{a - \sqrt a } \over {\sqrt a - 1}}} \right) \) với a ≥ 0 và a ≠ 1

Câu hỏi :

Rút gọn biểu thức: \(\displaystyle \left( {1 + {{a + \sqrt a } \over {\sqrt a  + 1}}} \right)\left( {1 - {{a - \sqrt a } \over {\sqrt a  - 1}}} \right) \) với a ≥ 0 và a ≠ 1

A. -a

B. a

C. 1 - a

D. 1 + a

* Đáp án

C

* Hướng dẫn giải

\(\eqalign{
&VT= \left( {1 + {{a + \sqrt a } \over {\sqrt a + 1}}} \right)\left( {1 - {{a - \sqrt a } \over {\sqrt a - 1}}} \right) \cr & =\left( {1 + {{\sqrt a .\sqrt a+ \sqrt a } \over {\sqrt a + 1}}} \right)\left( {1 - {{\sqrt a.\sqrt a - \sqrt a } \over {\sqrt a - 1}}} \right) \cr 
& = \left[ {1 + {{\sqrt a \left( {\sqrt a + 1} \right)} \over {\sqrt a + 1}}} \right]\left[ {1 - {{\sqrt a \left( {\sqrt a - 1} \right)} \over {\sqrt a - 1}}} \right] \cr 
& = \left( {1 + \sqrt a } \right)\left( {1 - \sqrt a } \right) \cr 
& =1-(\sqrt a)^2= 1 - a =VP\cr} \) 

Copyright © 2021 HOCTAP247