Có hàm số bậc nhất \(y = \left( {1 - \sqrt 5 } \right)x - 1\). Tính giá trị của x khi \(y = \sqrt 5 \)

Câu hỏi :

Cho hàm số bậc nhất \(y = \left( {1 - \sqrt 5 } \right)x - 1\). Tính giá trị của x khi \(y = \sqrt 5 \)

A.  \( \dfrac{{3 - \sqrt 5 }}{2}\)

B.  \(- \dfrac{{3 + \sqrt 5 }}{2}\)

C.  \(- \dfrac{{3 - \sqrt 5 }}{2}\)

D.  \(\dfrac{{3 + \sqrt 5 }}{2}\)

* Đáp án

B

* Hướng dẫn giải

Khi \(y = \sqrt 5 \) thì \(\left( {1 - \sqrt 5 } \right)x - 1 = \sqrt 5 \) \( \Rightarrow x = \dfrac{{1 + \sqrt 5 }}{{1 - \sqrt 5 }} \)\( = \dfrac{{\left( {1 + \sqrt 5 } \right)\left( {1 + \sqrt 5 } \right)}}{{\left( {1 - \sqrt 5 } \right)\left( {1 + \sqrt 5 } \right)}}\)\(= \dfrac{{{{\left( {1 + \sqrt 5 } \right)}^2}}}{{ - 4}} \)\(= \dfrac{{6 + 2\sqrt 5 }}{{ - 4}} =  - \dfrac{{3 + \sqrt 5 }}{2}\)

Copyright © 2021 HOCTAP247