Số nghiệm phương trình \(2{\left( {{x^2} - 2x} \right)^2} + 3\left( {{x^2} - 2x} \right) + 1 = 0\) là:

Câu hỏi :

Phương trình \(2{\left( {{x^2} - 2x} \right)^2} + 3\left( {{x^2} - 2x} \right) + 1 = 0\) có bao nhiêu nghiệm?

A. 1

B. 2

C. 3

D. 4

* Đáp án

C

* Hướng dẫn giải

Đặt \({x^2} - 2x = t\), ta có \(2{t^2} + 3t + 1 = 0\) 

Phương trình trên có \(a - b + c = 2 - 3 + 1 = 0\) nên có hai nghiệm \(t =  - 1;t =  - \dfrac{1}{2}.\)

+ Với \(t =  - 1\) ta có \({x^2} - 2x =  - 1 \Leftrightarrow {x^2} - 2x + 1 = 0\)

Phương trình này có \(a + b + c = 1 + \left( { - 2} \right) + 1 = 0\) nên có nghiệm \({x_1} = {x_2} = 1\)

+ Với \(t =  - \dfrac{1}{2}\) ta có \({x^2} - 2x =  - \dfrac{1}{2}\)\( \Leftrightarrow {x^2} - 2x + 1 = \dfrac{1}{2} \)\(\Leftrightarrow {\left( {x - 1} \right)^2} = \dfrac{1}{2}\)

\( \Leftrightarrow \left[ \begin{array}{l}x - 1 = \dfrac{{\sqrt 2 }}{2}\\x - 1 =  - \dfrac{{\sqrt 2 }}{2}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{{2 + \sqrt 2 }}{2}\\x = \dfrac{{2 - \sqrt 2 }}{2}\end{array} \right.\)

Vậy phương trình đã cho có ba nghiệm \(x = 1;x = \dfrac{{2 + \sqrt 2 }}{2};x = \dfrac{{2 - \sqrt 2 }}{2}\)

Copyright © 2021 HOCTAP247