A. \(x ≥ 4\)
B. \(x ≥ 3\)
C. \(x ≥ 2\)
D. \(x ≥ 5\)
C
Ta có: \(\sqrt {{x^2} - 4} + 2\sqrt {x - 2} \) có nghĩa khi và chỉ khi:
\({x^2} - 4 \ge 0\) và \(x - 2 \ge 0\)
Ta có: \(x - 2 \ge 0 \Leftrightarrow x \ge 2\)
\({x^2} - 4 \ge 0 \Leftrightarrow (x + 2)(x - 2) \ge 0\)
Trường hợp 1:
\(\left\{ \matrix{
x + 2 \ge 0 \hfill \cr
x - 2 \ge 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x \ge - 2 \hfill \cr
x \ge 2 \hfill \cr} \right. \Leftrightarrow x \ge 2\)
Trường hợp 2:
\(\left\{ \matrix{
x + 2 \le 0 \hfill \cr
x - 2 \le 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x \le - 2 \hfill \cr
x \le 2 \hfill \cr} \right. \Leftrightarrow x \le - 2\)
Vậy với \(x ≥ 2\) thì biểu thức có nghĩa.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247