A. \({{{{\left( {\sqrt x - 1} \right)}^2}} \over {\sqrt x }} \)
B. \({{{{\left( {\sqrt x + 2} \right)}^2}} \over {\sqrt x }} \)
C. \({{{{\left( {\sqrt x + 1} \right)}^2}} \over {\sqrt x }} \)
D. \({{{{\left( {\sqrt x - 2} \right)}^2}} \over {\sqrt x }} \)
C
Ta có:
\(\displaystyle A = {{x\sqrt x - 1} \over {x - \sqrt x }} - {{x\sqrt x + 1} \over {x + \sqrt x }} + {{x + 1} \over {\sqrt x }}\)\(\displaystyle \,\,\left( {x > 0;\,x \ne 1} \right)\)
\(\displaystyle \eqalign{ & = {{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)} \over {\sqrt x \left( {\sqrt x - 1} \right)}} - {{\left( {\sqrt x + 1} \right)\left( {x - \sqrt x + 1} \right)} \over {\sqrt x \left( {\sqrt x + 1} \right)}} + {{x + 1} \over {\sqrt x }} \cr & = {{x + \sqrt x + 1 - x + \sqrt x - 1 + x + 1} \over {\sqrt x }} \cr & = {{{x+2\sqrt x + 1}} \over {\sqrt x }} \cr & = {{{{\left( {\sqrt x + 1} \right)}^2}} \over {\sqrt x }} \cr} \)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247