Tìm nghiệm của phương trình \(\dfrac{{2x}}{{x + 1}} = \dfrac{{{x^2} - x + 8}}{{\left( {x - 1} \right)\left( {x - 4} \right)}}\) là:

Câu hỏi :

Nghiệm của phương trình \(\dfrac{{2x}}{{x + 1}} = \dfrac{{{x^2} - x + 8}}{{\left( {x - 1} \right)\left( {x - 4} \right)}}\) là:

A. x = -1

B. x = 8

C. A, B đều đúng

D. Đáp án khác

* Đáp án

B

* Hướng dẫn giải

\(\dfrac{{2x}}{{x + 1}} = \dfrac{{{x^2} - x + 8}}{{\left( {x - 1} \right)\left( {x - 4} \right)}}\)

Điều kiện: \(x \ne  - 1\)và \(x \ne 4\)  

Khử mẫu ta được 

\(\begin{array}{l}2{x^2} - 8x = {x^2} - x + 8\\ \Leftrightarrow {x^2} - 7x - 8 = 0\end{array}\)

Vì \(a - b + c = 1 - \left( { - 7} \right) + \left( { - 8} \right) = 0\) nên có hai nghiệm \(\left[ \begin{array}{l}x =  - 1\\x = 8\end{array} \right..\)

Vì \(x =  - 1\) không thỏa mãn điều kiện của ẩn nên phương  trình đã cho có nghiệm \(x = 8.\)

Copyright © 2021 HOCTAP247