A. \(1 +\dfrac{1}{\sqrt a}\)
B. \(1 -\dfrac{1}{\sqrt a}\)
C. \(2 -\dfrac{1}{\sqrt a}\)
D. \(2+\dfrac{1}{\sqrt a}\)
B
Ta có:
\(M={\left(\dfrac{1}{a -\sqrt a} +\dfrac{1}{\sqrt a -1}\right)} : \dfrac{\sqrt a +1}{a -2\sqrt a+1}\)
\(={\left(\dfrac{1}{\sqrt a .\sqrt a -\sqrt a .1}+\dfrac{1}{\sqrt a -1} \right)} : \dfrac{\sqrt a +1}{(\sqrt a)^2 -2\sqrt a+1}\)
\(={\left(\dfrac{1}{\sqrt a(\sqrt a -1)}+\dfrac{1}{\sqrt a -1} \right)} : \dfrac{\sqrt a +1}{(\sqrt a -1)^2}\)
\(={\left(\dfrac{1}{\sqrt a(\sqrt a -1)}+\dfrac{\sqrt a}{\sqrt a(\sqrt a -1)} \right)} : \dfrac{\sqrt a +1}{(\sqrt a -1)^2}\)
\(=\dfrac{1+\sqrt a}{\sqrt a(\sqrt a -1)} : \dfrac{\sqrt a +1}{(\sqrt a -1)^2}\)
\(=\dfrac{1+\sqrt a}{\sqrt a(\sqrt a -1)} . \dfrac{(\sqrt a -1)^2}{\sqrt a +1}\)
\(=\dfrac{1}{\sqrt a} . \dfrac{\sqrt a -1}{1}=\dfrac{\sqrt a -1}{\sqrt a}\).
\(=\dfrac{\sqrt a}{\sqrt a}-\dfrac{1}{\sqrt a} =1 -\dfrac{1}{\sqrt a}\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247