A. MH = MK
B. MH > MK
C. MH < MK
D. MK = 2MH
B
Xét (O) có \(HA = HB \;(gt)\)
Suy ra: \(OH ⊥ AB\) (đường kính đi qua trung điểm của dây không đi qua tâm thì vuông góc với dây đó)
Xét (O) có \(KC = KD\;\; (gt)\)
Suy ra: \(OK ⊥ CD\) (đường kính đi qua trung điểm của dây không đi qua tâm thì vuông góc với dây đó)
Mà \(AB > CD \;\;(gt)\)
Nên \(OK > OH\) ( dây lớn hơn thì gần tâm hơn)
Áp dụng định lí Pi-ta-go vào tam giác vuông \(OHM\) ta có:
\(O{M^2} = O{H^2} + H{M^2}\)
Suy ra: \(H{M^2} = O{M^2} - O{H^2}\) \( (1)\)
Áp dụng định lí Pi-ta-go vào tam giác vuông \(OKM,\) ta có:
\(O{M^2} = O{K^2} + K{M^2}\)
Suy ra: \(K{M^2} = O{M^2} - O{K^2}\) \((2)\)
Mà \(OH < OK (cmt) \) \( (3)\)
Từ \((1),\) \((2)\) và \((3)\) suy ra: \(H{M^2} > K{M^2}\) hay \(HM > KM.\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247