A. \(\dfrac{1+b}{b}\sqrt{ab}\).
B. \(\dfrac{2+b}{b}\sqrt{ab}\).
C. \(\dfrac{2-b}{b}\sqrt{ab}\).
D. \(\dfrac{1-b}{b}\sqrt{ab}\).
B
Ta có:
\(\sqrt{\dfrac{a}{b}}+\sqrt{ab}+\dfrac{a}{b}\sqrt{\dfrac{b}{a}}\)
\(=\dfrac{\sqrt{a}}{\sqrt b}+\sqrt{ab}+\dfrac{a}{b}.\dfrac{\sqrt{b}}{\sqrt a}\)
\(=\dfrac{\sqrt{a}.\sqrt b}{(\sqrt b)^2}+\sqrt{ab}+\dfrac{a}{b}.\dfrac{\sqrt{b}.\sqrt a}{(\sqrt a)^2}\)
\(=\dfrac{\sqrt{ab}}{b}+\sqrt{ab}+\dfrac{a}{b}.\dfrac{\sqrt{ab}}{a}\)
\(=\dfrac{\sqrt{ab}}{b}+\sqrt{ab}+\dfrac{\sqrt{ab}}{b}\)
\(={\left(\dfrac{\sqrt{ab}}{b}+\dfrac{\sqrt{ab}}{b} \right)}+\sqrt{ab}\)
\(=\dfrac{2\sqrt{ab}}{b}+\sqrt{ab}\)
\(=\dfrac{2\sqrt{ab}}{b}+\dfrac{b\sqrt{ab}}{b}\)
\(=\dfrac{2+b}{b}\sqrt{ab}\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247