Hãy tìm nghiệm của phương trình \({\left( {2x - \sqrt 2 } \right)^2} - 1 = \left( {x + 1} \right)\left( {x - 1} \right)\) là:

Câu hỏi :

Nghiệm của phương trình \({\left( {2x - \sqrt 2 } \right)^2} - 1 = \left( {x + 1} \right)\left( {x - 1} \right)\) là:

A. \({x_1} = \dfrac{{   \sqrt 2   + \sqrt 2 }}{3} ;\) \({x_2} = \dfrac{{ \sqrt 2 - \sqrt 2 }}{3} \)

B. \({x_1} = \dfrac{{   2\sqrt 2   + \sqrt 2 }}{3} ;\) \({x_2} = \dfrac{{ \sqrt 2 - \sqrt 2 }}{3} \)

C. \({x_1} = \dfrac{{   \sqrt 2   + \sqrt 2 }}{3} ;\) \({x_2} = \dfrac{{ 2\sqrt 2 - \sqrt 2 }}{3} \)

D. \({x_1} = \dfrac{{   2\sqrt 2   + \sqrt 2 }}{3} ;\) \({x_2} = \dfrac{{ 2\sqrt 2 - \sqrt 2 }}{3} \)

* Đáp án

D

* Hướng dẫn giải

\({\left( {2x - \sqrt 2 } \right)^2} - 1 = \left( {x + 1} \right)\left( {x - 1} \right)\)\( \Leftrightarrow 4{x^2} - 4\sqrt 2 x + 2 - 1 = {x^2} - 1 \)\(\Leftrightarrow 3{x^2} - 4\sqrt 2 x + 2 = 0\)

\(a = 3;b' =  - 2\sqrt 2 ;c = 2\); \(\Delta ' = {\left( {b'} \right)^2} - ac \)\(= {\left( {2\sqrt 2 } \right)^2} - 3.2 = 2 > 0\)

Phương trình có hai nghiệm phân biệt

\({x_1} = \dfrac{{ - b' + \sqrt {\Delta '} }}{a} \)\(= \dfrac{{   2\sqrt 2   + \sqrt 2 }}{3} ;\)

\({x_2} = \dfrac{{ - b' - \sqrt {\Delta '} }}{a}\)\( = \dfrac{{ 2\sqrt 2 - \sqrt 2 }}{3} \)

Copyright © 2021 HOCTAP247