Phương trình \(x^2- (m - 1) - m^2 + m - 2 = 0\). Tìm m để biểu thức \( A = {\left( {\frac{{{x_1}}}{{{x_2}}}} \right)^3} - {\left( {\frac{{{x_2}}}{{{x_1}}}} \right)^3}\) đạt giá trị...

Câu hỏi :

Cho phương trình \(x^2- (m - 1) - m^2 + m - 2 = 0\), với m là tham số. Gọi hai nghiệm của phương trình đã cho là x1, x2. Tìm m để biểu thức \( A = {\left( {\frac{{{x_1}}}{{{x_2}}}} \right)^3} - {\left( {\frac{{{x_2}}}{{{x_1}}}} \right)^3}\) đạt giá trị lớn nhất.

A. 4

B. 3

C. 2

D. 1

* Đáp án

D

* Hướng dẫn giải

+) Xét với \(a.c = - {m^2} + m - 2 = - {\left( {m - \frac{1}{2}} \right)^2} - \frac{3}{4} < 0\) mọi m∈R

Vậy phương trình luôn có hai nghiệm trái dấu với mọi m

+) Gọi hai nghiệm của phương trình đã cho là x1, x2

Vì phương trình luôn có hai nghiệm trái dấu nên x1x2≠0, do đó A được xác định với mọi x1,x2

Do x1,x2 trái dấu nên \( {\left( {\frac{{{x_1}}}{{{x_2}}}} \right)^3} = - t\) với t>0, suy ra \( {\left( {\frac{{{x_2}}}{{{x_1}}}} \right)^3} < 0\), suy ra A<0 

Đặt \( {\left( {\frac{{{x_1}}}{{{x_2}}}} \right)^3} = - t\) với t>0, suy ra \( {\left( {\frac{{{x_2}}}{{{x_1}}}} \right)^3} = - \frac{1}{t}\)

Khi đó \( A = - t - \frac{1}{t}\) mang giá trị âm và AA đạt giá trị lớn nhất khi −A có giá trị nhỏ nhất

Ta có  \( - A = t + \frac{1}{t} \ge 2\) (BĐT Cô -si), suy ra A≤−2. Đẳng thức xảy ra khi và chỉ khi \( t = \frac{1}{t} \Leftrightarrow {t^2} = 1 \Rightarrow t = 1\)

Với t=1, ta có 

\( {\left( {\frac{{{x_1}}}{{{x_2}}}} \right)^3} = - 1 \Leftrightarrow \frac{{{x_1}}}{{{x_2}}} = - 1 \Leftrightarrow {x_1} = - {x_2} \Leftrightarrow {x_1} + {x_2} = 0 \Leftrightarrow - \left( {m - 1} \right) = 0 \Leftrightarrow m = 1.\)

Vậy với m=1 thì biểu thức A đạt giá trị lớn nhất là −2

Đáp án cần chọn là: D

Copyright © 2021 HOCTAP247