Tìm x biết \( \displaystyle{{\sqrt {4x + 3} } \over {\sqrt {x + 1} }} = 3.\)

Câu hỏi :

Tìm x biết \( \displaystyle{{\sqrt {4x + 3} } \over {\sqrt {x + 1} }} = 3.\)

A. x = -1,8

B. x = 1,2

C. x = -1,2

D. Đáp án khác

* Đáp án

D

* Hướng dẫn giải

Ta có : \( \displaystyle{{\sqrt {4x + 3} } \over {\sqrt {x + 1} }}\) xác định khi và chỉ khi:

\( \displaystyle\eqalign{
& \left\{ \matrix{
4x + 3 \ge 0 \hfill \cr 
x + 1 > 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
4x \ge - 3 \hfill \cr 
x > - 1 \hfill \cr} \right. \cr 
& \Leftrightarrow \left\{ \matrix{
x \ge - 0,75 \hfill \cr 
x > - 1 \hfill \cr} \right. \Leftrightarrow x \ge - 0,75 \cr} \)

Với \(x ≥ -0,75\) ta có: 

\( \displaystyle\eqalign{
& {{\sqrt {4x + 3} } \over {\sqrt {x + 1} }} = 3 \Leftrightarrow {{4x + 3} \over {x + 1}} = 9 \cr 
& \Rightarrow 4x + 3 = 9(x + 1) \cr} \)

\( \displaystyle\eqalign{
&  \Leftrightarrow 4x + 3 = 9x + 9 \cr 
& \Leftrightarrow 5x = - 6 \Leftrightarrow x = - 1,2\,\text{(không thỏa mãn)} \cr} \)

Vậy không có giá trị nào của x để \( \displaystyle{{\sqrt {4x + 3} } \over {\sqrt {x + 1} }} = 3.\)

Copyright © 2021 HOCTAP247