Tìm x thỏa mãn điều kiện \( \displaystyle{{\sqrt {2x - 3} } \over {\sqrt {x - 1} }} = 2\)

Câu hỏi :

Tìm x thỏa mãn điều kiện \( \displaystyle{{\sqrt {2x - 3} } \over {\sqrt {x - 1} }} = 2\)

A. x = 0,5

B. x = 1

C. x = 1,5

D. Không có x

* Đáp án

D

* Hướng dẫn giải

Ta có: \( \displaystyle{{\sqrt {2x - 3} } \over {\sqrt {x - 1} }}\) xác định khi và chỉ khi:

\( \displaystyle\eqalign{
& \left\{ \matrix{
2x - 3 \ge 0 \hfill \cr 
x - 1 > 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
2x \ge 3 \hfill \cr 
x > 1 \hfill \cr} \right. \cr 
& \Leftrightarrow \left\{ \matrix{
x \ge 1,5 \hfill \cr 
x > 1 \hfill \cr} \right. \Leftrightarrow x \ge 1,5 \cr} \)

Với \(x ≥ 1,5\) ta có: 

\( \displaystyle\eqalign{
& {{\sqrt {2x - 3} } \over {\sqrt {x - 1} }} = 2 \Leftrightarrow {{2x - 3} \over {x - 1}} = 4 \cr 
& \Rightarrow 2x - 3 = 4(x - 1) \cr} \)

\( \displaystyle\eqalign{
& \Leftrightarrow 2x - 3 = 4x - 4 \cr 
& \Leftrightarrow 2x = 1 \Leftrightarrow x = 0,5 \cr} \)

Giá trị \(x = 0,5\) không thỏa mãn điều kiện.

Vậy không có giá trị nào của \(x\) để \( \displaystyle{{\sqrt {2x - 3} } \over {\sqrt {x - 1} }} = 2\)

Copyright © 2021 HOCTAP247