A. 1
B. 2
C. 3
D. 4
B
Đặt \(t = {x^2};t \ge 0\), ta có \(2{t^2} + 3t - 2 = 0\)
Phương trình trên có \(\Delta = {3^2} - 4.2.\left( { - 2} \right) = 25 > 0 \)\(\Rightarrow \sqrt \Delta = 5\)
\({t_1} = \dfrac{{ - 3 + 5}}{{2.2}} = \dfrac{1}{2}\left( N \right);\) \({t_2} = \dfrac{{ - 3 - 5}}{{2.2}} = - 2\left( L \right)\)
Với \(t = {t_1} = \dfrac{1}{2}\) ta có \({x^2} = \dfrac{1}{2}\)\( \Leftrightarrow x = \pm \dfrac{{\sqrt 2 }}{2}\)
Vậy phương trình có nghiệm \(x = \dfrac{{\sqrt 2 }}{2};\)\(x = - \dfrac{{\sqrt 2 }}{2}\) .
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247