Tìm giá trị của x biết \(\sqrt {1 - 4x + 4{x^2}} = 5\)

Câu hỏi :

Tìm x biết \(\sqrt {1 - 4x + 4{x^2}}  = 5\)

A. \(x = -2\) và \(x = 3.\)

B. \(x = 2\) và \(x = 3.\)

C. \(x = -2\) và \(x = -3.\)

D. \(x = 2\) và \(x = -3.\)

* Đáp án

A

* Hướng dẫn giải

Ta có: 

\(\eqalign{
& \sqrt {1 - 4x +4{x^2}} = 5\,\,\,\,(3) \cr 
& \Leftrightarrow \sqrt {{{\left( {1 - 2x} \right)}^2}} = 5 \cr 
& \Leftrightarrow \left| {1 - 2x} \right| = 5 \cr} \)   

Trường hợp 1:

\(\eqalign{
& 1 - 2x \ge 0 \Leftrightarrow 2x \le 1 \Leftrightarrow x \le {1 \over 2} \cr 
& \Rightarrow \left| {1 - 2x} \right| = 1 - 2x \cr} \)

 Suy ra:

\(\eqalign{
& 1 - 2x = 5 \Leftrightarrow - 2x = 5 - 1 \cr & \Leftrightarrow -2x = 4 \cr
& \Leftrightarrow x = - 2 \cr} \)

Giá trị \(x = -2\) thỏa mãn điều kiện \(\displaystyle x \le {1 \over 2}\) 

Vậy \(x = -2\) là nghiệm của phương trình (3).

Trường hợp 2: 

\(\eqalign{
& 1 - 2x < 0 \Leftrightarrow 2x > 1 \Leftrightarrow x > {1 \over 2} \cr 
& \Rightarrow \left| {1 - 2x} \right| = 2x - 1 \cr} \)

Suy ra: 

\(2x - 1 = 5 \Leftrightarrow 2x = 5 + 1 \)\(\Leftrightarrow 2x = 6\Leftrightarrow x = 3\)

Giá trị \(x = 3\) thỏa mãn điều kiện \(\displaystyle x > {1 \over 2}\)

Vậy \(x = 3\) là nghiệm của phương trình (3).

Vậy \(x = -2\) và \(x = 3.\)

Copyright © 2021 HOCTAP247