Rút gọn biểu thức sau: \(\displaystyle P = \left( {{1 \over {x - \sqrt x }} + {{\sqrt x } \over {x - 1}}} \right):{{x\sqrt x - 1} \over {x\sqrt x - \sqrt x }}\) với \(\displaysty...

Câu hỏi :

Rút gọn biểu thức: \(\displaystyle P = \left( {{1 \over {x - \sqrt x }} + {{\sqrt x } \over {x - 1}}} \right):{{x\sqrt x  - 1} \over {x\sqrt x  - \sqrt x }}\) với \(\displaystyle x > 0\) và \(\displaystyle x ≠ 1\).

A. \({1 \over {\sqrt x + 1}}\)

B. \({2 \over {\sqrt x  - 1}}\)

C. \({1 \over {\sqrt x  - 1}}\)

D. \({2 \over {\sqrt x  + 1}}\)

* Đáp án

C

* Hướng dẫn giải

\(\displaystyle \eqalign{  & P = \left( {{1 \over {x - \sqrt x }} + {{\sqrt x } \over {x - 1}}} \right):{{x\sqrt x  - 1} \over {x\sqrt x  - \sqrt x }}  \cr  &  = \left[ {{1 \over {\sqrt x \left( {\sqrt x  - 1} \right)}} + {{\sqrt x } \over {\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 1} \right)}}} \right]:{{\sqrt {{x^3}}  - 1} \over {\sqrt x \left( {x - 1} \right)}}  \cr  &  = {{\sqrt x  + 1 + x} \over {\sqrt x \left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 1} \right)}}.{{\sqrt x \left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 1} \right)} \over {\left( {\sqrt x  - 1} \right)\left( {x + \sqrt x  + 1} \right)}} \cr&= {1 \over {\sqrt x  - 1}} \cr} \)

(với \(\displaystyle x > 0\) và \(\displaystyle x ≠ 1\))

Copyright © 2021 HOCTAP247