Hệ phương trình \(\left\{ \begin{array}{l}x - y\sqrt 2 = \sqrt 5 \\x\sqrt 2 + y = 1 - \sqrt {10} \end{array} \right.\) có nghiệm là đáp án nào sau đây?

Câu hỏi :

Hệ phương trình \(\left\{ \begin{array}{l}x - y\sqrt 2  = \sqrt 5 \\x\sqrt 2  + y = 1 - \sqrt {10} \end{array} \right.\) có nghiệm là:

A. \(\left( {x;y} \right) = \left( {\dfrac{{2\sqrt 2  + 3\sqrt 5 }}{5};\dfrac{{1 + 2\sqrt {10} }}{5}} \right)\)

B. \(\left( {x;y} \right) = \left( {\dfrac{{2\sqrt 2  - 3\sqrt 5 }}{5};\dfrac{{1 +2\sqrt {10} }}{5}} \right)\)

C. \(\left( {x;y} \right) = \left( {\dfrac{{2\sqrt 2  - 3\sqrt 5 }}{5};\dfrac{{1 - 2\sqrt {10} }}{5}} \right)\)

D. \(\left( {x;y} \right) = \left( {\dfrac{{2\sqrt 2  +3\sqrt 5 }}{5};\dfrac{{1 - 2\sqrt {10} }}{5}} \right)\)

* Đáp án

C

* Hướng dẫn giải

\(\left\{ \begin{array}{l}x - 2\sqrt 2 y = \sqrt 5 \\x\sqrt 2  + y = 1 - \sqrt {10} \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = 2\sqrt 2 y + \sqrt 5 \\x\sqrt 2  + y = 1 - \sqrt {10} \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = 2\sqrt 2 y + \sqrt 5 \\\left( {2\sqrt 2 y + \sqrt 5 } \right)\sqrt 2  + y = 1 - \sqrt {10} \end{array} \right.\) 

\( \Leftrightarrow \left\{ \begin{array}{l}x = 2\sqrt 2 y + \sqrt 5 \\y = \dfrac{{1 - 2\sqrt {10} }}{5}\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}x = \dfrac{{2\sqrt 2  - 3\sqrt 5 }}{5}\\y = \dfrac{{1 - 2\sqrt {10} }}{5}\end{array} \right.\)

Vậy hệ phương trình đã cho có nghiệm duy nhất \(\left( {x;y} \right) = \left( {\dfrac{{2\sqrt 2  - 3\sqrt 5 }}{5};\dfrac{{1 - 2\sqrt {10} }}{5}} \right)\)

Copyright © 2021 HOCTAP247