Tìm giá trị của x biết \(\sqrt {{x^2} + 6x + 9} = 3x - 1\)

Câu hỏi :

Rút gọn rồi tính \(\sqrt {\sqrt {{{( - 5)}^8}} } \)

A. 3x = 2

B. x = 0

C. x = 1

D. x = 2

* Đáp án

D

* Hướng dẫn giải

Ta có : 

\(\sqrt {{x^2} + 6x + 9}  = 3x - 1\)

\(\eqalign{
& \Leftrightarrow \sqrt {{{\left( {x + 3} \right)}^2}} = 3x - 1 \cr 
& \Leftrightarrow \left| {x + 3} \right| = 3x - 1\,\,\,\,\,\,\,(2) \cr} \)

Trường hợp 1: 

\(\eqalign{
& x + 3 \ge 0 \Leftrightarrow x \ge - 3 \cr 
& \Rightarrow \left| {x + 3} \right| = x + 3 \cr} \)

Suy ra : 

\(\eqalign{
& x + 3 = 3x - 1 \cr 
& \Leftrightarrow x - 3x = - 1 - 3 \cr 
& \Leftrightarrow - 2x = - 4 \Leftrightarrow x = 2 \cr} \)

Giá trị \(x = 2\) thỏa mãn điều kiện \(x ≥ -3.\)

Vậy \(x = 2\) là nghiệm của phương trình (2).

Trường hợp 2: 

\(\eqalign{
& x + 3 < 0 \Leftrightarrow x < - 3 \cr 
& \Rightarrow \left| {x + 3} \right| = - x - 3 \cr} \)

Suy ra: 

\(\eqalign{
& - x - 3 = 3x - 1 \cr 
& \Leftrightarrow - x - 3x = - 1 + 3 \cr 
& \Leftrightarrow - 4x = 2 \Leftrightarrow x = - 0,5 \cr} \)

Giá trị \(x = -0,5\) không thỏa mãn điều kiện \(x < -3\) nên loại.

Vậy \(x = 2.\)

Copyright © 2021 HOCTAP247