Rút gọn biểu thức: \(B = 2\sqrt {25xy} + \sqrt {225{x^3}{y^3}} \)\(\,- 3y\sqrt {16{x^3}y} \,\,\,\,\left( {x \ge 0;y \ge 0} \right)\)

Câu hỏi :

Rút gọn: \(B = 2\sqrt {25xy}  + \sqrt {225{x^3}{y^3}}  \)\(\,- 3y\sqrt {16{x^3}y} \,\,\,\,\left( {x \ge 0;y \ge 0} \right)\)

A. \(\sqrt {xy} \left( {10 + 3xy} \right) \)

B. \(\sqrt {xy} \left( {10 - 3xy} \right) \)

C. \(\sqrt {xy} \left( {10 + xy} \right) \)

D. \(\sqrt {xy} \left( {10 -xy} \right) \)

* Đáp án

A

* Hướng dẫn giải

Ta có:

\(\begin{array}{l}
B = 2\sqrt {25xy} + \sqrt {225{x^3}{y^3}} - 3y\sqrt {16{x^3}y} \\
= 2\sqrt {{5^2}} .\sqrt {xy} + \sqrt {{{15}^2}{x^2}{y^2}} .\sqrt {xy} - 3y\sqrt {{4^2}{x^2}} .\sqrt {xy}
\end{array}\)

\( = 10\sqrt {xy}  + 15\left| {xy} \right|\sqrt {xy}  \)\(\,- 12\left| x \right|y\sqrt {xy} \)

Vì \(x ≥ 0\) và \(y ≥ 0 ⇒ xy ≥ 0\), nên \(|x| = x; |xy| = xy\)

Vậy :

\(\eqalign{   B &= 10\sqrt {xy}  + 15xy\sqrt {xy}  - 12xy\sqrt {xy}   \cr  &   = 10\sqrt {xy}  + 3xy\sqrt {xy}  \cr& = \sqrt {xy} \left( {10 + 3xy} \right) \cr} \)

Copyright © 2021 HOCTAP247