Rút gọn biểu thức \( \displaystyle{{\sqrt 2  + \sqrt 3  + \sqrt 6  + \sqrt 8  + \sqrt {16} } \over {\sqrt 2  + \sqrt 3  +

Câu hỏi :

Rút gọn \( \displaystyle{{\sqrt 2  + \sqrt 3  + \sqrt 6  + \sqrt 8  + \sqrt {16} } \over {\sqrt 2  + \sqrt 3  + \sqrt 4 }}.\) 

A. \(  2 + \sqrt 2 \) 

B. \(  -1 + \sqrt 2 \) 

C. \(  1 + \sqrt 2 \) 

D. \(  1 - \sqrt 2 \) 

* Đáp án

C

* Hướng dẫn giải

\( \displaystyle\eqalign{
& {{\sqrt 2 + \sqrt 3 + \sqrt 6 + \sqrt 8 + \sqrt {16} } \over {\sqrt 2 + \sqrt 3 + \sqrt 4 }} \cr 
& = {{\sqrt 2 + \sqrt 3 + \sqrt 6 + \sqrt 8 + 4} \over {\sqrt 2 + \sqrt 3 + \sqrt 4 }} \cr} \)

\( \displaystyle= {{\sqrt 2  + \sqrt 3  + 2 + 2 + \sqrt 6  + \sqrt 8 } \over {\sqrt 2  + \sqrt 3  + \sqrt 4 }}\)

\( \displaystyle= {{\sqrt 2  + \sqrt 3  + \sqrt 4  + \sqrt 4  + \sqrt 6  + \sqrt 8 } \over {\sqrt 2  + \sqrt 3  + \sqrt 4 }}\)

\( \displaystyle = {{\left( {\sqrt 2  + \sqrt 3  + \sqrt 4 } \right) + \sqrt 2 \left( {\sqrt 2  + \sqrt 3  + \sqrt 4 } \right)} \over {\sqrt 2  + \sqrt 3  + \sqrt 4 }}\)

\( \displaystyle= {{\left( {\sqrt 2  + \sqrt 3  + \sqrt 4 } \right)\left( {1 + \sqrt 2 } \right)} \over {\sqrt 2  + \sqrt 3  + \sqrt 4 }}\)\( = 1 + \sqrt 2 \) 

Copyright © 2021 HOCTAP247