Rút gọn biểu thức : \(\displaystyle A = {{x\sqrt x - 1} \over {x - \sqrt x }} - {{x\sqrt x + 1} \over {x + \sqrt x }} + {{x + 1} \over {\sqrt x }}\) \(\left( {x > 0;\,x \ne 1} \r...

Câu hỏi :

Rút gọn : \(\displaystyle A = {{x\sqrt x  - 1} \over {x - \sqrt x }} - {{x\sqrt x  + 1} \over {x + \sqrt x }} + {{x + 1} \over {\sqrt x }}\) \(\left( {x > 0;\,x \ne 1} \right)\)

A. \({{{{\left( {\sqrt x  - 1} \right)}^2}} \over {\sqrt x }} \)

B. \({{{{\left( {\sqrt x  + 2} \right)}^2}} \over {\sqrt x }} \)

C. \({{{{\left( {\sqrt x  + 1} \right)}^2}} \over {\sqrt x }} \)

D. \({{{{\left( {\sqrt x  - 2} \right)}^2}} \over {\sqrt x }} \)

* Đáp án

C

* Hướng dẫn giải

Ta có:

\(\displaystyle A = {{x\sqrt x  - 1} \over {x - \sqrt x }} - {{x\sqrt x  + 1} \over {x + \sqrt x }} + {{x + 1} \over {\sqrt x }}\)\(\displaystyle \,\,\left( {x > 0;\,x \ne 1} \right)\) 

\(\displaystyle \eqalign{  &  = {{\left( {\sqrt x  - 1} \right)\left( {x + \sqrt x  + 1} \right)} \over {\sqrt x \left( {\sqrt x  - 1} \right)}} - {{\left( {\sqrt x  + 1} \right)\left( {x - \sqrt x  + 1} \right)} \over {\sqrt x \left( {\sqrt x  + 1} \right)}} + {{x + 1} \over {\sqrt x }}  \cr  &  = {{x + \sqrt x  + 1 - x + \sqrt x  - 1 + x + 1} \over {\sqrt x }} \cr  &  = {{{x+2\sqrt x  + 1}} \over {\sqrt x }} \cr  &  = {{{{\left( {\sqrt x  + 1} \right)}^2}} \over {\sqrt x }} \cr} \)

Copyright © 2021 HOCTAP247