Một xuồng du lịch đi từ thành phố Cà Mau đến Đất Mũi theo một đường sông dài 120km. Trên đường đi, xuồng nghỉ lại 1 giờ ở thị trấn Năm Căn. Khi về, xuồng đi theo đường khác dài hơn...

Câu hỏi :

Một xuồng du lịch đi từ thành phố Cà Mau đến Đất Mũi theo một đường sông dài 120km. Trên đường đi, xuồng nghỉ lại 1 giờ ở thị trấn Năm Căn. Khi về, xuồng đi theo đường khác dài hơn đường lúc đi là 5 km và với vận tốc nhỏ hơn vận tốc lúc đi là 5km/h. Tính vận tốc của xuồng lúc đi, biết rằng thời gian về bằng thời gian đi.

A. \(50\,\left( {km/h} \right)\).

B. \(20\,\left( {km/h} \right)\).

C. \(30\,\left( {km/h} \right)\).

D. \(40\,\left( {km/h} \right)\).

* Đáp án

C

* Hướng dẫn giải

Gọi vận tốc xuồng lúc đi là \(x\left( {km/h} \right),x > 0\)

       vận tốc xuồng lúc về là \(x - 5\left( {km/h} \right)\,\)

Thời gian đi \(120km\) là \(\dfrac{{120}}{x}\) (giờ)

Vì khi đi có nghỉ 1 giờ nên thời gian khi đi hết tất cả là \(\dfrac{{120}}{x} + 1\) (giờ)

Đường về dài \(120 + 5 = 125(km)\)

Thời gian về là \(\dfrac{{125}}{{x - 5}}\,\) (giờ)

Theo đầu bài, thời gian về bằng thời gian đi nên ta có phương trình:

\(\dfrac{{120}}{x} + 1 = \dfrac{{125}}{{x - 5}}\)

Giải phương trình

Khủ mẫu và biến đổi ta được

 \(\begin{array}{l}120\left( {x - 5} \right) + x\left( {x - 5} \right) = 125x\\ \Leftrightarrow {x^2} - 10x - 600 = 0\end{array}\)

Phương trình trên có \(\Delta ' = {\left( { - 5} \right)^2} - 1.\left( { - 600} \right) = 625 > 0\)\( \Rightarrow \sqrt \Delta   = 25\)

Nên phương trình có hai nghiệm \(\left[ \begin{array}{l}x = \dfrac{{5 + 25}}{1} = 30\\x = \dfrac{{5 - 25}}{1} =  - 20\end{array} \right.\)

Vì \(x > 0\) nên \(x = 30\)

Vậy vận tốc của xuồng khi đi là \(30\,\left( {km/h} \right)\).

Copyright © 2021 HOCTAP247