Tìm giá trị của x, biết : \(\left( {\sqrt x + {1 \over {\sqrt x + 1}}} \right).\left( {1 - {{\sqrt x + 2} \over {x + \sqrt x + 1}}} \right) > 0\,\left( * \right)\)

Câu hỏi :

Tìm x, biết : \(\left( {\sqrt x  + {1 \over {\sqrt x  + 1}}} \right).\left( {1 - {{\sqrt x  + 2} \over {x + \sqrt x  + 1}}} \right) > 0\,\left( * \right)\) 

A. \(x < 1\).

B. \(x > 0\).

C. \(x > 1\).

D. \(x < 0\).

* Đáp án

C

* Hướng dẫn giải

Điều kiện: \(x ≥ 0\).

Ta có: 

\(\left( {\sqrt x  + {1 \over {\sqrt x  + 1}}} \right).\left( {1 - {{\sqrt x  + 2} \over {x + \sqrt x  + 1}}} \right) > 0\)

\(\eqalign{  & \Leftrightarrow {{\sqrt x \left( {\sqrt x  + 1} \right) + 1} \over {\sqrt x  + 1}}.{{x + \sqrt x  + 1 - \sqrt x  - 2} \over {x + \sqrt x  + 1}} > 0  \cr  &  \Leftrightarrow {{x + \sqrt x  + 1} \over {\sqrt x  + 1}}.{{x - 1} \over {x + \sqrt x  + 1}} > 0  \cr  &  \Leftrightarrow {{(\sqrt x  + 1)(\sqrt x  - 1)} \over {\sqrt x  + 1}}>0\cr  &  \Leftrightarrow \sqrt x  - 1 > 0  \cr  &  \Leftrightarrow \sqrt x  > 1 \cr} \)

\(\;\;⇔ x > 1\) (thỏa mãn điều kiện \(x ≥ 0\))

Vậy \(x > 1\). 

Copyright © 2021 HOCTAP247