Tìm giá trị của x, biết : \(\sqrt {{x^2} - 2x + 1} = \sqrt {6 + 4\sqrt 2 } \)\(\,- \sqrt {6 - 4\sqrt 2 } \,\,\,\,\,\left( * \right)\)

Câu hỏi :

Tìm x, biết : \(\sqrt {{x^2} - 2x + 1}  = \sqrt {6 + 4\sqrt 2 }  \)\(\,- \sqrt {6 - 4\sqrt 2 } \,\,\,\,\,\left( * \right)\)

A.  \(\left[ {\matrix{ {x = 1 + 2\sqrt 2 } \cr {x = 1 - 2\sqrt 2 }\cr } } \right.\)

B.  \(\left[ {\matrix{ {x = 1 + \sqrt 2 } \cr {x = 1 - \sqrt 2 }\cr } } \right.\)

C.  \(\left[ {\matrix{ {x = 2 + 2\sqrt 2 } \cr {x = 2 - 2\sqrt 2 }\cr } } \right.\)

D.  \(\left[ {\matrix{ {x = 2 + \sqrt 2 } \cr {x = 2 - \sqrt 2 }\cr } } \right.\)

* Đáp án

A

* Hướng dẫn giải

Ta có: 

\(\sqrt {{x^2} - 2x + 1}  = \sqrt {6 + 4\sqrt 2 }  \)\(\,- \sqrt {6 - 4\sqrt 2 } \)

\( \Leftrightarrow \sqrt {{{\left( {x - 1} \right)}^2}}  = \sqrt {{{\left( {2 + \sqrt 2 } \right)}^2}} {\rm{ }}{\mkern 1mu}  - \sqrt {{{\left( {2 - \sqrt 2 } \right)}^2}} {\mkern 1mu} \)

\(\eqalign{  & \Leftrightarrow \left| {x - 1} \right| = \left| {2 + \sqrt 2 } \right| - \left| {2 - \sqrt 2 } \right|  \cr  &  \Leftrightarrow \left| {x - 1} \right| = 2 + \sqrt 2  - \left( {2 - \sqrt 2 } \right)  \cr  &  \Leftrightarrow \left| {x - 1} \right| = 2\sqrt 2   \cr  &  \Leftrightarrow \left[ {\matrix{   {x - 1 = 2\sqrt 2 }  \cr   {x - 1 =  - 2\sqrt 2 }  \cr  } } \right. \cr&\Leftrightarrow \left[ {\matrix{   {x = 1 + 2\sqrt 2 }  \cr   {x = 1 - 2\sqrt 2 }  \cr  } } \right. \cr} \)

Copyright © 2021 HOCTAP247