Với hệ phương trình sau: \((I)\,\,\left\{ \begin{array}{l}2x - y = 5\\2y - x = 5\end{array} \right.\) và \((II)\,\,\left\{ \begin{array}{l}x = y + 1\\y = x + 1\end{array} \right.\...

Câu hỏi :

Cho hai hệ phương trình \((I)\,\,\left\{ \begin{array}{l}2x - y = 5\\2y - x = 5\end{array} \right.\)  và \((II)\,\,\left\{ \begin{array}{l}x = y + 1\\y = x + 1\end{array} \right.\)

A. Hệ (I) có một nghiệm duy nhất và hệ (II) có một nghiệm duy nhất.

B. Hệ (I) có vô số nghiệm và hệ (II) có một nghiệm duy nhất.

C. Hệ (I) có một nghiệm duy nhất và hệ (II) vô nghiệm.

D. Hệ (I) có vô số nghiệm và hệ (II) vô nghiệm

* Đáp án

C

* Hướng dẫn giải

Ta xét hệ (I) \(\left\{ \begin{array}{l}2x - y = 5\\2y - x = 5\end{array} \right. \)\(\Leftrightarrow \left\{ \begin{array}{l}y = 2x - 5\\2\left( {2x - 5} \right) - x = 5\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}3x = 15\\y = 2x - 5\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 5\\y = 5\end{array} \right.\)

Suy ra hệ (I) có nghiệm duy nhất  \(\left( {x;y} \right) = \left( {5;5} \right)\)

Ta xét hệ (II) \(\left\{ \begin{array}{l}x = y + 1\\y = x + 1\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = y + 1\\y = y + 1 + 1\end{array} \right. \)\(\Leftrightarrow \left\{ \begin{array}{l}x = y + 1\\0 = 2\,\end{array}\,(Vô \,\,nghiệm) \right.\)  

Vậy hệ phương trình (II) vô nghiệm.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi vào lớp 10 năm 2021 môn Toán Trường THPT Thăng Long

Số câu hỏi: 49

Copyright © 2021 HOCTAP247