Cho biểu thức \(P = 1 + \dfrac{{x - \sqrt x }}{{\sqrt x - 1}},\) với \(x \ge 0\) và \(x \ne 1\). Rút gọn biểu thức P

Câu hỏi :

Cho biểu thức \(P = 1 + \dfrac{{x - \sqrt x }}{{\sqrt x  - 1}},\) với \(x \ge 0\) và \(x \ne 1\). Rút gọn biểu thức P

A. \(1 + x\)

B. \(x + \sqrt x\)

C. \(2 + \sqrt x\)

D. \(1 + \sqrt x\)

* Đáp án

D

* Hướng dẫn giải

Với \(x \ge 0\) và \(x \ne 1\) ta có:

\(\begin{array}{l}P = 1 + \dfrac{{x - \sqrt x }}{{\sqrt x  - 1}}\\\,\,\,\,\, = 1 + \dfrac{{\sqrt x \left( {\sqrt x  - 1} \right)}}{{\sqrt x  - 1}}\\\,\,\,\,\, = 1 + \sqrt x \end{array}\)

Copyright © 2021 HOCTAP247