Cho phương trình \({x^2} - 2mx + 2m - 1 = 0\) (m là tham số) (1). Giải phương trình (1) với \(m = 2.\)

Câu hỏi :

Cho phương trình \({x^2} - 2mx + 2m - 1 = 0\) (m là tham số) (1). Giải phương trình (1) với \(m = 2.\)

A. \(S = \left\{ {1;\;3} \right\}\)  

B. \(S = \left\{ {-1;\;3} \right\}\)  

C. \(S = \left\{ {1;\;-3} \right\}\)  

D. \(S = \left\{ {-1;\;-3} \right\}\)  

* Đáp án

A

* Hướng dẫn giải

Thay \(m = 2\) vào phương trình \(\left( 1 \right)\) ta được:

\(\begin{array}{l}\left( 1 \right) \Leftrightarrow {x^2} - 4x + 3 = 0\\ \Leftrightarrow {x^2} - 3x - x + 3 = 0\\ \Leftrightarrow x\left( {x - 3} \right) - \left( {x - 3} \right) = 0\\ \Leftrightarrow \left( {x - 1} \right)\left( {x - 3} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 1 = 0\\x - 3 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 3\end{array} \right..\end{array}\)

Vậy với \(m = 2\) thì phương trình có tập nghiệm \(S = \left\{ {1;\;3} \right\}.\) 

Copyright © 2021 HOCTAP247