A. \(m = -\dfrac{3}{2}\)
B. \(m = -\dfrac{2}{3}\)
C. \(m = \dfrac{2}{3}\)
D. \(m = \dfrac{3}{2}\)
D
Tìm giá trị của m để phương trình \(2{x^2} - 5x + 2m - 1 = 0\) có hai nghiệm phân biệt \({x_1}\) và \({x_2}\) thỏa mãn: \(\dfrac{1}{{{x_1}}} + \dfrac{1}{{{x_2}}} = \dfrac{5}{2}.\)
Phương trình đã cho có hai nghiệm phân biệt \( \Leftrightarrow \Delta > 0 \Leftrightarrow {5^2} - 4.2.\left( {2m - 1} \right) > 0\)
\(\begin{array}{l} \Leftrightarrow 25 - 16m + 8 > 0\\ \Leftrightarrow 16m < 33\\ \Leftrightarrow m < \dfrac{{33}}{{16}}.\end{array}\)
Với \(m < \dfrac{{33}}{{16}}\) thì phương trình đã cho có hai nghiệm phân biệt \({x_1},\;{x_2}.\)
Áp dụng hệ thức Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = \dfrac{5}{2}\\{x_1}{x_2} = \dfrac{{2m - 1}}{2}\end{array} \right..\) (điều kiện \(x_1.x_2\ne 0\Rightarrow m\ne \dfrac {1}2)\)
Theo đề bài ta có:
\(\dfrac{1}{{{x_1}}} + \dfrac{1}{{{x_2}}} = \dfrac{5}{2}\)
\(\begin{array}{l} \Leftrightarrow 2\left( {{x_1} + {x_2}} \right) = 5{x_1}{x_2}\\ \Leftrightarrow 2.\dfrac{5}{2} = 5.\dfrac{{2m - 1}}{2}\\ \Leftrightarrow 10 = 10m - 5\\ \Leftrightarrow 10m = 15\\ \Leftrightarrow m = \dfrac{3}{2}\;\;\left( {tm} \right).\end{array}\)
Vậy \(m = \dfrac{3}{2}\) thỏa mãn bài toán.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247