Hãy tính vận tốc ô tô khi đi từ A đến B, biết thời gian đi nhiều hơn thời gian về là 1 giờ 45 phút.

Câu hỏi :

Một xe ô tô đi từ A đến B theo đường quốc lộ cũ dài 156 km với vận tốc không đổi. Khi từ B về A, xe đi đường cao tốc mới nên quãng đường giảm được 36 km so với lúc đi và vận tốc tăng so với lúc đi là 32 km/h. Tính vận tốc ô tô khi đi từ A đến B, biết thời gian đi nhiều hơn thời gian về là 1 giờ 45 phút.

A. \(48\;km/h\) 

B. \(46\;km/h\) 

C. \(44\;km/h\) 

D. \(50\;km/h\) 

* Đáp án

A

* Hướng dẫn giải

Gọi vận tốc của ô tô khi đi từ A đến B là \(x\;\left( {km/h} \right)\;\;\left( {x > 0} \right).\)

Thời gian ô tô đi từ A đến B là: \(\dfrac{{156}}{x}\) (giờ).

Quãng đường lúc về là: \(156 - 36 = 120\left( {km} \right)\)

Vận tốc của ô tô lúc về là: \(x + 32\;\;\left( {km/h} \right).\) Thời gian của ô tô lúc về là: \(\dfrac{{120}}{{x + 32}}\) (giờ).

Đổi:  1 giờ 45 phút \( = 1 + \dfrac{{45}}{{60}} = \dfrac{7}{4}\) giờ.

Theo đề bài ta có phương trình: \(\dfrac{{156}}{x} - \dfrac{{120}}{{x + 32}} = \dfrac{7}{4}\)

\(\begin{array}{l} \Leftrightarrow 156.4.\left( {x + 32} \right) - 120.4.x = 7x\left( {x + 32} \right)\\ \Leftrightarrow 624x + 19968 - 480x = 7{x^2} + 224x\\ \Leftrightarrow 7{x^2} + 80x - 19968 = 0\\ \Leftrightarrow \left( {x - 48} \right)\left( {7x + 416} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 48 = 0\\7x + 416 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 48\;\;\left( {tm} \right)\\x =  - \dfrac{{416}}{7}\;\;\left( {ktm} \right)\end{array} \right..\end{array}\)

Vậy vận tốc của ô tô lúc đi từ A đến B là \(48\;km/h.\)

Copyright © 2021 HOCTAP247