Rút gọn biểu thức: \(B = \left( {\dfrac{1}{{\sqrt x - 1}} - \dfrac{1}{{\sqrt x + 1}}} \right):\dfrac{{x + 1}}{{x - 1}}\) với \(x \ge 0\) và \(x \ne \pm 1\)

Câu hỏi :

Rút gọn biểu thức: \(B = \left( {\dfrac{1}{{\sqrt x  - 1}} - \dfrac{1}{{\sqrt x  + 1}}} \right):\dfrac{{x + 1}}{{x - 1}}\)  với \(x \ge 0\)  và \(x \ne  \pm 1\) 

A. \(\dfrac{2}{{x}}\)

B. \(\dfrac{2}{{x - 1}}\)

C. \(\dfrac{1}{{x + 1}}\)

D. \(\dfrac{2}{{x + 1}}\)

* Đáp án

D

* Hướng dẫn giải

\(B = \left( {\dfrac{1}{{\sqrt x  - 1}} - \dfrac{1}{{\sqrt x  + 1}}} \right):\dfrac{{x + 1}}{{x - 1}}\) với \(x \ge 0\)  và \(x \ne  \pm 1\)

\(\begin{array}{l}B = \left( {\dfrac{{\sqrt x  + 1}}{{\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 1} \right)}} - \dfrac{{\sqrt x  - 1}}{{\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 1} \right)}}} \right):\dfrac{{x + 1}}{{\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 1} \right)}}\\\;\; = \dfrac{{\sqrt x  + 1 - \sqrt x  + 1}}{{\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 1} \right)}}.\dfrac{{\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 1} \right)}}{{x + 1}}\\\;\; = \dfrac{2}{{x + 1}}.\end{array}\)

Copyright © 2021 HOCTAP247