A. \(7,8\;dvdt.\)
B. \(7,2\;dvdt.\)
C. \(7\;dvdt.\)
D. \(7,5\;dvdt.\)
D
Phương trình hoành độ giao điểm của hai đồ thị hàm số là: \({x^2} = x + 2\)
\(\begin{array}{l} \Leftrightarrow {x^2} - x - 2 = 0\\ \Leftrightarrow \left( {x + 1} \right)\left( {x - 2} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x + 1 = 0\\x - 2 = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = - 1 \Rightarrow A\left( { - 1;\;1} \right)\\x = 2 \Rightarrow B\left( {2;\;4} \right)\end{array} \right..\end{array}\)
C là hình chiếu của B trên trục hoành \( \Rightarrow C\left( {2;\;0} \right).\)
D là hình chiếu của A trên trục hoành \( \Rightarrow D\left( { - 1;\;0} \right).\)
Dựa vào đồ thị hàm số ta thấy ABCD là hình thang vuông tại D và C.
\(\begin{array}{l} \Rightarrow {S_{ABCD}} = \dfrac{{\left( {AD + CB} \right).CD}}{2} \\\;\;\;\;\;\;\;\;\;\;= \dfrac{{\left( {AD + CB} \right).\left( {DO + OC} \right)}}{2}\\\;\;\;\;\;\;\;\;\;\;= \dfrac{{\left( {1 + 4} \right)\left( {1 + 2} \right)}}{2} \\\;\;\;\;\;\;\;\;\;\;= \dfrac{{15}}{2} = 7,5\;\;\left( {dvdt} \right).\end{array}\)
Vậy diện tích tứ giác ABCD là: \(7,5\;dvdt.\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247