A. 10 phần quà và mỗi phần quà có 12 quyển vở
B. 12 phần quà và mỗi phần quà có 12 quyển vở
C. 10 phần quà và mỗi phần quà có 10 quyển vở
D. 9 phần quà và mỗi phần quà có 10 quyển vở
A
Gọi số phần quà ban đầu là \(x\) (phần) \(\left( {x \in N*} \right).\)
Gọi số quyển vở có trong mỗi phần quà là \(y\) (quyển vở) \(\left( {y \in N*} \right).\)
\( \Rightarrow \) Tổng số quyển vở của nhóm học sinh có là: \(xy\) (quyển).
Nếu mỗi phần quà giảm 2 quyển thì số có thêm 2 phần quà nữa nên ta có phương trình:
\(xy = \left( {x + 2} \right)\left( {y - 2} \right)\)
\(\Leftrightarrow 2y - 2x - 4 = 0 \)
\(\Leftrightarrow y - x = 2.\;\;\left( 1 \right)\)
Nếu mỗi phần quả giảm 4 quyển thì có thêm 5 phần quà nữa nên ta có phương trình:
\(xy = \left( {x + 5} \right)\left( {y - 4} \right) \)
\(\Leftrightarrow 5y - 4x - 20 = 0 \)
\(\Leftrightarrow 5y - 4x = 20\;\;\;\;\left( 2 \right)\)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{ \begin{array}{l}y - x = 2\\5y - 4x = 20\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}5y - 5x = 10\\5y - 4x = 20\end{array} \right.\)
\(\Leftrightarrow \left\{ \begin{array}{l}x = 10\\y = x + 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 10\;\;\left( {tm} \right)\\y = 12\;\;\;\left( {tm} \right)\end{array} \right..\)
Vậy ban đầu có 10 phần quà và mỗi phần quà có 12 quyển vở.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247