Cho các số thực dương a, b, c thỏa mãn điều kiện \(a + b + c = 3\). Tìm giá trị nhỏ nhất của biểu thức \(A = 4{a^2} + 6{b^2} + 3{c^2}\)

Câu hỏi :

Cho các số thực dương a, b, c thỏa mãn điều kiện \(a + b + c = 3\). Tìm giá trị nhỏ nhất của biểu thức \(A = 4{a^2} + 6{b^2} + 3{c^2}\)

A. \({A_{\min }} = 11\)

B. \({A_{\min }} = 13\)

C. \({A_{\min }} = 12\)

D. \({A_{\min }} = 10\)

* Đáp án

C

* Hướng dẫn giải

Áp dụng BĐT Cauchy cho 2 số dương ta có:

\(\begin{array}{l}4\left( {{a^2} + 1} \right) \ge 4.2\sqrt {{a^2}.1}  = 8a\\6\left( {{b^2} + \dfrac{4}{9}} \right) \ge 6.2\sqrt {{b^2}.\dfrac{4}{9}}  = 8b\\3\left( {{c^2} + \dfrac{{16}}{9}} \right) \ge 3.2\sqrt {{c^2}.\dfrac{{16}}{9}}  = 8c\end{array}\)

Cộng vế theo vế ta có \(A + 4 + \dfrac{8}{3} + \dfrac{{16}}{3} \ge 8\left( {a + b + c} \right) = 8.3 = 24\)

Vậy \(A \ge 12\)

Dấu bằng xảy ra \( \Leftrightarrow \left\{ \begin{array}{l}{a^2} - 1\\{b^2} = \dfrac{4}{9}\\{c^2} = \dfrac{{16}}{9}\\a,b,c \ge 0\\a + b + c = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = \dfrac{2}{3}\\c = \dfrac{4}{3}\end{array} \right.\)

Vậy \({A_{\min }} = 12 \Leftrightarrow \left( {a;b;c} \right) = \left( {1;\dfrac{2}{3};\dfrac{4}{3}} \right)\)

Copyright © 2021 HOCTAP247