Rút gọn biểu thức \(C = \left( {\dfrac{{\sqrt a }}{{\sqrt a - 1}} - \dfrac{{\sqrt a }}{{a - \sqrt a }}} \right):\dfrac{{\sqrt a + 1}}{{a - 1}}\) với \(a > 0\) và \(a \ne 1.\)

Câu hỏi :

Rút gọn biểu thức \(C = \left( {\dfrac{{\sqrt a }}{{\sqrt a  - 1}} - \dfrac{{\sqrt a }}{{a - \sqrt a }}} \right):\dfrac{{\sqrt a  + 1}}{{a - 1}}\) với \(a > 0\) và \(a \ne 1.\) 

A. \(C = \sqrt a  - 2\) 

B. \(C = \sqrt a  + 2\) 

C. \(C = \sqrt a  - 1\) 

D. \(C = \sqrt a  + 1\) 

* Đáp án

C

* Hướng dẫn giải

\(\begin{array}{l}C = \left( {\dfrac{{\sqrt a }}{{\sqrt a  - 1}} - \dfrac{{\sqrt a }}{{a - \sqrt a }}} \right):\dfrac{{\sqrt a  + 1}}{{a - 1}}\\\;\; = \left( {\dfrac{{\sqrt a }}{{\sqrt a  - 1}} - \dfrac{{\sqrt a }}{{\sqrt a \left( {\sqrt a  - 1} \right)}}} \right):\dfrac{{\sqrt a  + 1}}{{\left( {\sqrt a  - 1} \right)\left( {\sqrt a  + 1} \right)}}\\\;\; = \left( {\dfrac{{\sqrt a }}{{\sqrt a  - 1}} - \dfrac{1}{{\sqrt a  - 1}}} \right):\dfrac{1}{{\sqrt a  - 1}}\\\;\; = \dfrac{{\sqrt a  - 1}}{{\sqrt a  - 1}}.\left( {\sqrt a  - 1} \right)\\\;\; = \sqrt a  - 1.\end{array}\)

Vậy \(C = \sqrt a  - 1.\)

Copyright © 2021 HOCTAP247