A. 20 chiếc nón lá
B. 22 chiếc nón lá
C. 18 chiếc nón lá
D. 25 chiếc nón lá
A
Gọi số chiếc nón lá mỗi ngày cơ sở đó làm được là \(x\) (chiếc) \(\left( {x \in N*} \right).\)
Số ngày cơ sở đó dự kiến làm hết 300 chiếc nón lá là: \(\dfrac{{300}}{x}\;\) (ngày).
Sau khi làm tăng thêm 5 chiếc nón lá một ngày thì thời gian cơ sở đó làm hết 300 chiếc nón lá là: \(\dfrac{{300}}{{x + 5}}\) (ngày)
Theo đề bài ta có phương trình: \(\dfrac{{300}}{x} - \dfrac{{300}}{{x + 5}} = 3\)
\(\begin{array}{l} \Leftrightarrow 300\left( {x + 5} \right) - 300x = 3x\left( {x + 5} \right)\\ \Leftrightarrow 100x + 500 - 100x = {x^2} + 5x\\ \Leftrightarrow {x^2} + 5x - 500 = 0\\ \Leftrightarrow \left( {x - 20} \right)\left( {x + 25} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 20 = 0\\x + 25 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 20\;\;\left( {tm} \right)\\x = - 25\;\;\left( {ktm} \right)\end{array} \right..\end{array}\)
Vậy theo dự kiến, mỗi ngày cơ sở đó làm được 20 chiếc nón lá.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247