Rút gọn biểu thức sau: \(Q = \dfrac{a}{{\sqrt {{a^2} - {b^2}} }} - \left( {1 + \dfrac{a}{{\sqrt {{a^2} - {b^2}} }}} \right):\dfrac{b}{{a - \sqrt {{a^2} - {b^2}} }}\).

Câu hỏi :

Rút gọn biểu thức \(Q = \dfrac{a}{{\sqrt {{a^2} - {b^2}} }} - \left( {1 + \dfrac{a}{{\sqrt {{a^2} - {b^2}} }}} \right):\dfrac{b}{{a - \sqrt {{a^2} - {b^2}} }}\) với a > b > 0

A.  \( \dfrac{{a + b}}{{\sqrt {{a^2} + {b^2}} }}\)

B.  \( \dfrac{{a - b}}{{\sqrt {{a^2}+ {b^2}} }}\)

C.  \( \dfrac{{a + b}}{{\sqrt {{a^2} - {b^2}} }}\)

D.  \( \dfrac{{a - b}}{{\sqrt {{a^2} - {b^2}} }}\)

* Đáp án

D

* Hướng dẫn giải

 \(Q = \dfrac{a}{{\sqrt {{a^2} - {b^2}} }} - \left( {1 + \dfrac{a}{{\sqrt {{a^2} - {b^2}} }}} \right):\dfrac{b}{{a - \sqrt {{a^2} - {b^2}} }}\)

\(= \dfrac{a}{{\sqrt {{a^2} - {b^2}} }} - \left( {\dfrac{{\sqrt {{a^2} - {b^2}} + a}}{{\sqrt {{a^2} - {b^2}} }}} \right) . \dfrac{{a - \sqrt {{a^2} - {b^2}} }}{b}\)

\(= \dfrac{a}{{\sqrt {{a^2} - {b^2}} }} - \dfrac{{\left( {\sqrt {{a^2} - {b^2}} + a} \right)\left( {a - \sqrt {{a^2} - {b^2}} } \right)}}{{b\sqrt {{a^2} - {b^2}} }}\)

\(= \dfrac{a}{{\sqrt {{a^2} - {b^2}} }} - \dfrac{{{a^2} - {{\left( {\sqrt {{a^2} - {b^2}} } \right)}^2}}}{{b\sqrt {{a^2} - {b^2}} }}\)

\(= \dfrac{a}{{\sqrt {{a^2} - {b^2}} }} - \dfrac{{{a^2} - {a^2} + {b^2}}}{{b\sqrt {{a^2} - {b^2}} }}\)

\(= \dfrac{a}{{\sqrt {{a^2} - {b^2}} }} - \dfrac{{{b^2}}}{{b\sqrt {{a^2} - {b^2}} }}\)

\(= \dfrac{{ab - {b^2}}}{{b\sqrt {{a^2} - {b^2}} }}\)

\(= \dfrac{{b\left( {a - b} \right)}}{{b\sqrt {{a^2} - {b^2}} }}\)

\(= \dfrac{{a - b}}{{\sqrt {{a^2} - {b^2}} }}\)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi vào lớp 10 năm 2021 môn Toán Trường THPT Quang Trung

Số câu hỏi: 50

Copyright © 2021 HOCTAP247