A. 33,18 m
B. 34,18 m
C. 32,18 m
D. 31,18 m
C
Giả sử AMB là cung tròn của đường tròn tâm O. Vẽ đường kính MN.
M là điểm chính giữa của cung AB \( \Rightarrow OM \bot AB\) và K là trung điểm của AB
\( \Rightarrow AK = \dfrac{1}{2}AB = 15\,\left( m \right)\).
Ta có \(\widehat {MAN} = {90^0}\) (góc nội tiếp chắn nửa đường tròn) \( \Rightarrow \Delta AMN\) vuông tại A.
Áp dụng hệ thức lượng trong tam giác vuông AMN có:
\(A{K^2} = KM.KN \Leftrightarrow {15^2} = 5.KN \) \(\Leftrightarrow KN = 45\,\,\left( m \right)\)
\( \Rightarrow MN = KM + KN = 5 + 45 = 50\,\,\left( m \right)\)
\( \Rightarrow \) Bán kính đường tròn tâm O là \(R = 25m\).
Xét tam giác vuông ANK có \(\tan \widehat {ANK} = \dfrac{{AK}}{{KN}} = \dfrac{{15}}{{45}} = \dfrac{1}{3}\)
\(\Rightarrow \widehat {ANK} = \arctan \dfrac{1}{3}\)
\( \Rightarrow \widehat {AOK} = 2\widehat {ANK} = 2\arctan \dfrac{1}{3}\) (góc ở tâm và góc nội tiếp cùng chắn cung AM).
Xét tam giác OAB có \(OA = OB \Rightarrow \Delta OAB\) cân tại O \( \Rightarrow \) Đường cao OK đồng thời là phân giác
\( \Rightarrow \widehat {AOB} = 2\widehat {AOK} = 4\arctan \dfrac{1}{3} \approx 73,{7^0}\)
Vậy độ dài cung AMB là \(l = \dfrac{{\pi .R.{n^0}}}{{{{180}^0}}} = \dfrac{{\pi .25.73,7}}{{180}} \approx 32,18\,\,\left( m \right)\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247