Tìm giá trị nhỏ nhất của biểu thức \(P = \sqrt {1 - x} + \sqrt {1 + x} + 2\sqrt x \).

Câu hỏi :

Tìm giá trị nhỏ nhất của biểu thức \(P = \sqrt {1 - x}  + \sqrt {1 + x}  + 2\sqrt x \). 

A. \(Min\;P = 3\;\;khi\;\;x = 0\) 

B. \(Min\;P = 4\;\;khi\;\;x = 0\) 

C. \(Min\;P = 2\;\;khi\;\;x = 0\) 

D. \(Min\;P = 1\;\;khi\;\;x = 0\) 

* Đáp án

C

* Hướng dẫn giải

Điều kiện: \(\left\{ \begin{array}{l}1 - x \ge 0\\1 + x \ge 0\\x \ge 0\end{array} \right. \Leftrightarrow 0 \le x \le 1.\) 

Với \(0 \le x \le 1,\) ta có: \(x\left( {1 - x} \right) \ge 0 \)

\(\Leftrightarrow \sqrt {x\left( {1 - x} \right)}  \ge 0\)

\(\Leftrightarrow 2\sqrt {x\left( {1 - x} \right)}  \ge 0\)

\(\begin{array}{l} \Leftrightarrow x + 2\sqrt {x\left( {1 - x} \right)}  + 1 - x \ge 1\\ \Leftrightarrow {\left( {\sqrt x  + \sqrt {1 - x} } \right)^2} \ge 1\\ \Leftrightarrow \sqrt x  + \sqrt {1 - x}  \ge 1.\\ \Rightarrow P = \sqrt {1 - x}  + \sqrt {1 + x}  + 2\sqrt x  \\\;\;\;\;= \sqrt x  + \sqrt {1 - x}  + \sqrt {1 + x}  + \sqrt x  \\\;\;\;\ge 1 + \sqrt {1 + x}  + \sqrt x .\end{array}\)

Với \(x \ge 0 \Rightarrow \sqrt x  + \sqrt {x + 1}  \ge 1 \)

\(\Rightarrow P \ge 1 + \sqrt x  + \sqrt {x + 1}  \ge 2.\)

Dấu “=” xảy ra \( \Leftrightarrow x = 0.\)

Vậy \(Min\;P = 2\;\;khi\;\;x = 0.\) 

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi vào lớp 10 năm 2021 môn Toán Trường THPT Tây Hồ

Số câu hỏi: 47

Copyright © 2021 HOCTAP247