Cho \(Q = 4a - \sqrt {{a^2} - 4a + 4} ,\) với \(a \ge 2\) . Khẳng định nào sau đây đúng?

Câu hỏi :

Cho \(Q = 4a - \sqrt {{a^2} - 4a + 4} ,\) với \(a \ge 2\) . Khẳng định nào sau đây đúng?

A. \(Q = 5a + 2.\) 

B. \(Q = 3a - 2.\) 

C. \(Q = 3a + 2.\) 

D. \(Q = 5a - 2.\) 

* Đáp án

C

* Hướng dẫn giải

\(Q = 4a - \sqrt {{a^2} - 4a + 4}\)\(\,  = 4a - \sqrt {{{\left( {a - 2} \right)}^2}}  \)\(\,= 4a - \left| {a - 2} \right| = 4a - \left( {a - 2} \right)\)\(\, = 3a + 2\left( {do\,\,a \ge 2} \right)\)

Chọn C.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi vào lớp 10 năm 2021 môn Toán Trường THPT Tây Hồ

Số câu hỏi: 47

Copyright © 2021 HOCTAP247