Rút gọn biểu thức \(A = \left( {\dfrac{1}{{x + \sqrt x }} - \dfrac{1}{{\sqrt x + 1}}} \right):\dfrac{{\sqrt x - 1}}{{x + 2\sqrt x + 1}} + 1\) với \(x > 0,\;\;x \ne 1.\)

Câu hỏi :

Rút gọn biểu thức \(A = \left( {\dfrac{1}{{x + \sqrt x }} - \dfrac{1}{{\sqrt x  + 1}}} \right):\dfrac{{\sqrt x  - 1}}{{x + 2\sqrt x  + 1}} + 1\) với \(x > 0,\;\;x \ne 1.\)

A. \({ - \frac{2}{{\sqrt x }}}\) 

B. \({  \frac{2}{{\sqrt x }}}\) 

C. \({  \frac{1}{{\sqrt x }}}\) 

D. \({ - \frac{1}{{\sqrt x }}}\) 

* Đáp án

D

* Hướng dẫn giải

Điều kiện: \(x > 0,\;\;x \ne 1.\)

\(\begin{array}{l}A = \left( {\dfrac{1}{{x + \sqrt x }} - \dfrac{1}{{\sqrt x  + 1}}} \right):\dfrac{{\sqrt x  - 1}}{{x + 2\sqrt x  + 1}} + 1\\\;\;\; = \left( {\dfrac{1}{{\sqrt x \left( {\sqrt x  + 1} \right)}} - \dfrac{1}{{\sqrt x  + 1}}} \right):\dfrac{{\sqrt x  - 1}}{{{{\left( {\sqrt x  + 1} \right)}^2}}} + 1\\\;\;\; = \dfrac{{1 - \sqrt x }}{{\sqrt x \left( {\sqrt x  + 1} \right)}}.\dfrac{{{{\left( {\sqrt x  + 1} \right)}^2}}}{{\sqrt x  - 1}} + 1\\\;\;\; =  - \dfrac{{\sqrt x  + 1}}{{\sqrt x }} + 1\\\;\;\; = \dfrac{{ - \sqrt x  - 1 + \sqrt x }}{{\sqrt x }} =  - \dfrac{1}{{\sqrt x }}.\end{array}\)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi vào lớp 10 năm 2021 môn Toán Trường THPT Chu Văn An

Số câu hỏi: 49

Copyright © 2021 HOCTAP247