Gọi \({x_1},\;{x_2}\) là hai nghiệm của phương trình \({x^2} - 2\left( {m - 1} \right)x - 2m - 7 = 0\) (\(m\) là tham số). Tìm các giá trị của \(m\) để biểu thức \(A = x_1^2 + x_2...

Câu hỏi :

Gọi \({x_1},\;{x_2}\) là hai nghiệm của phương trình \({x^2} - 2\left( {m - 1} \right)x - 2m - 7 = 0\)  (\(m\) là tham số). Tìm các giá trị của \(m\) để biểu thức \(A = x_1^2 + x_2^2 + 6{x_1}{x_2}\) đạt giá trị nhỏ nhất.

A. \(m = -2\)  

B. \(m = -1\)  

C. \(m = 1\)  

D. \(m = 2\)  

* Đáp án

D

* Hướng dẫn giải

Phương trình có hai nghiệm \({x_1},\;{x_2} \Leftrightarrow \Delta ' \ge 0\)

\(\begin{array}{l} \Leftrightarrow {\left( {m - 1} \right)^2} + 2m + 7 \ge 0\\ \Leftrightarrow {m^2} - 2m + 1 + 2m + 7 \ge 0\\ \Leftrightarrow {m^2} + 8 \ge 0\;\;\;\forall m.\end{array}\)

Hay phương trình luôn có hai nghiệm phân biệt \({x_1},\;{x_2}\) với mọi \(m.\)

Áp dụng hệ thức Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\left( {m - 1} \right)\\{x_1}{x_2} =  - 2m - 7\end{array} \right..\)

Theo đề bài ta có:

\(\begin{array}{l}A = x_1^2 + x_2^2 + 6{x_1}{x_2} = {\left( {{x_1} + {x_2}} \right)^2} + 4{x_1}{x_2}\\\;\;\; = 4{\left( {m - 1} \right)^2} - 4\left( {2m + 7} \right)\\\;\;\; = 4\left( {{m^2} - 2m + 1 - 2m - 7} \right)\\\;\;\; = 4\left( {{m^2} - 4m + 4 - 10} \right)\\\;\;\; = 4\left[ {{{\left( {m - 2} \right)}^2} - 10} \right]\\\;\;\; = 4{\left( {m - 2} \right)^2} - 40.\end{array}\)

 

Vì \({\left( {m - 2} \right)^2} \ge 0\) \( \Rightarrow 4{\left( {m - 2} \right)^2} \ge 0 \) \(\Rightarrow 4{\left( {m - 2} \right)^2} - 40 \ge  - 40.\)

\( \Rightarrow A \ge  - 40\)  hay \(Min\;A =  - 40\)

Dấu “=” xảy ra \( \Leftrightarrow m - 2 = 0 \Leftrightarrow m = 2.\)

Vậy \(m = 2.\) 

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi vào lớp 10 năm 2021 môn Toán Trường THPT Chu Văn An

Số câu hỏi: 49

Copyright © 2021 HOCTAP247