Cho hàm số \(y = - \dfrac{1}{2}{x^2}\) có đồ thị \(\left( P \right)\) và đường thẳng \(\left( d \right):\;\;y = 3 - 4x.\) Lập phương trình đường thẳng \(\left( \Delta \right)\) s...

Câu hỏi :

Cho hàm số \(y =  - \dfrac{1}{2}{x^2}\) có đồ thị \(\left( P \right)\) và đường thẳng \(\left( d \right):\;\;y = 3 - 4x.\) Lập phương trình đường thẳng \(\left( \Delta  \right)\) song song với \(\left( d \right)\) và cắt \(\left( P \right)\) tại điểm \(M\) có hoành độ bằng \(2.\)

A. \(y =  - 4x - 6\)  

B. \(y =  4x - 6\)  

C. \(y =  - 4x + 6\)  

D. \(y =  4x + 6\)  

* Đáp án

C

* Hướng dẫn giải

Gọi phương trình đường thẳng \(\left( \Delta  \right):\;\;y = ax + b.\)

Khi đó \(\left( \Delta  \right)//\left( d \right) \Rightarrow \left\{ \begin{array}{l}a =  - 4\\b \ne 3\end{array} \right.\) \( \Rightarrow \left( \Delta  \right):\;\;y =  - 4x + b.\)

Điểm \(M\) có hoành độ bằng \(2\) và thuộc đồ thị hàm số \(\left( P \right) \Rightarrow y =  - \dfrac{1}{2}{.2^2} =  - 2 \Rightarrow M\left( {2; - 2} \right).\)

Điểm \(M\left( {2; - 2} \right) \in \left( \Delta  \right) \) \(\Rightarrow  - 2 =  - 4.2 + b \Leftrightarrow b = 6\;\;\left( {tm} \right).\)

Vậy phương trình đường thẳng \(\left( \Delta  \right):\;\;y =  - 4x + 6.\)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi vào lớp 10 năm 2021 môn Toán Trường THPT Chu Văn An

Số câu hỏi: 49

Copyright © 2021 HOCTAP247